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A theoretical analysis has been made of the transition probabilities for a Rabi-type atomic-beam spec-
trometer in which the exciting field amplitude seen by the atoms has a sinusoidal rather than a rectangular
envelope. The time-dependent Schrédinger equation was integrated numerically and a velocity average of the
transition probabilities performed. The results indicate that the linewidth increases as the fourth root of the
excitation power and that frequency shifts due to coupling of the exciting field with other atomic states are
reduced by an order of magnitude at excitation powers much above optimum.

1. INTRODUCTION

N some recent experiments by Harrach! hyperfine
transitions in thallium were observed with an
atomic-beam spectrometer. An attempt was made to
observe a shift in the frequency of the F=0, M =0,
to F=1, M =1 transition due to virtual, nonresonant
transitions to the F=1, M =—1 state. Such a shift
has been predicted theoretically®® to be proportional
to the power in the microwave field inducing the transi-
tions and inversely proportional to the static magnetic
field (C field) which separates the F =1 sublevels. How-
ever, the observed power-dependent shifts were an
order of magnitude smaller than predicted and had a
dependence on the magnetic field suggesting they were
perhaps due to overlap with the AM =0 transition,
which was also observed. Also, the resonance line width
was found to be proportional to the fourth root of the
microwave input power, whereas the usual theories of
atomic-beam spectrometers give a width proportional
to the square root of the input power.t
In Harrach’s experiment the cavity mode used for
introducing microwave radiation to the atomic beam
was such that the magnetic field had a sinusoidal
variation in the longitudinal direction. Thus, the field
amplitude seen by atoms passing through the cavity
had a time dependence corresponding to half a sine
wave, rather than a rectangular wave, as is assumed in
the usual theoretical treatments (see Fig. 1). The
present work was undertaken to see if this difference
could account for Harrach’s observations. Section 2
discusses the mathematics for finding the resonance
transition probability appropriate to the experiments.
Section 3 describes the numerical techniques employed
to evaluate the mathematics. Section 4 describes the
results and Sec. 5 summarizes the situation.

1R, J. Harrach, thesis, University of Colorado, 1965, Chap. V
(unpublished) ; Natl. Bur. Std. (U.S.) Tech. News Bull. 346, 1966.
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3 M. Mizushima, Phys. Rev. 133, A414 (1964).

4N. F. Ramsey, Molecular Beams (Oxford University Press,
New York, 1956), Chap. V. Although an increase in linewidth
with increasing excitation power is well-known experimentally,
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Ramsey (private communication) ].
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2. MATHEMATICAL FORMULATION

In the very low C fields used for the experiments, the
hyperfine spectrum of TI*® exhibits four states: the
F =0 ground state, which we take to have zero energy,
and three equally spaced F=1 levels, whose energies
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Fic. 1. Amplitude of the radiation field seen by atoms in
an atomic-beam spectrometer: (a) usual Rabi configuration;
(b) configuration used by Harrach.

(in frequency units) we call @, @+a, and Q—a. The
microwave excitation field at frequency w connects the
F=0 state to each of the F=1 states with matrix ele-
ments 25 coswt or 2¢ coswt. The Hamiltonian describing
the thallium atoms in the radiation field can then be
written

((Q+a 0 0 2¢ coswt
0 Q 0 2b coswt
0 0 Q—a —2¢ coswt ’
2¢ coswt  2b coswt  —2¢ coswt 0

where b and ¢ are assumed real. If the radiation field
is parallel to the static field, ¢ is zero, if perpendicular,
b is zero. Both are proportional to the amplitude of the
microwave magnetic field.

It is possible to make part of the interaction terms in
the Hamiltonian time-independent by a ‘‘phase-factor-
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ing” transformation® which redefines the Schrsédinger
probability amplitude by e*!. Choosing u =% (w+Q+a)
for each of the F=1 levels and p=%(—w+Q+a) for
the =0 level, the new probability amplitudes obey a
Schrodinger equation with the Hamiltonian

—A 0 0 c
0 —A—a 0 b
0 0 —A—2a ——c!
L ¢ b —c A J

-+terms oscillating with freq. 2w,

where A=1(w—Q—a). The time-independent part in-
cludes the resonant interactions with the microwave
field. For b, ¢w the oscillating part can be neglected
(rotating field approximation).t In the experiments ¢/w
was at most 4X 1077,

Assuming A, b, and ¢ are all small compared to @, we
further reduce the Hamiltonian to a two-by-two matrix

—A c
( )
¢ AH4c2/2a+b/a

Here we have retained the submatrix involving the
two resonant states which are nearly degenerate after
the phase-factoring transformation. The terms with @
in the denominator are second-order perturbation cor-
rections which approximately account for the effects
of the other two states.?’ If an atom initially in the
upper state experiences the radiation field for a time ¢,
the probability that a transition will occur to the lower

state is
P(t) =(c*/¢*) sin’gt, (2)

= (A4-c*/4a+0%/2a)2.

This is the usual Rabi transition probability. To cor-
respond to an atomic-beam experiment, it must be
averaged over the different times ¢ that different atoms
spend in the radiation field region due to their distribu-
tion in velocity:

(Py= (/) [5—1(2ql/) ], 3

where / is the length of the radiation field region, a=
(2kT/m)2 is related to the average velocity of atoms
in the beam, and the function 7 is tabulated in Ref. 4.
The resonance in {P) is peaked at A+4c?/4a+b2/2a=0
or w=04-a—c?/2a—b%/a. The last two terms represent
the power-dependent shift which the experiments had
hoped to observe.

with

§J. H. Shirley, thesis, California Institute of Technology,
1963, Chap. IV (unpublished). Compare also K. Freed, J. Chem.
Phys. 43, 1113 (1965).

6 J. H. Shirley, J. Appl. Phys. 34, 783 (1963); F. Bloch and A.
Siegert, Phys, Rev. 57, 522 (1940).

7 J. H. Shirley, Ref. 5, Appendix A.
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In the preceding analysis it was assumed that the
amplitude of the radiation field (b, ¢) was constant
during the time the atom was exposed to it. In the
actual experiment the amplitude had a sinusoidal varia-
tion. If we replace b by (37)b sinwt, and ¢ by (37) ¢ sinv,
then redefine phases to make the Hamiltonian traceless,
we obtain the Hamiltonian

3m) ¢ sinvt
: (4)

— A+8w sin?vt
A—dw sinyt

(37) ¢ sinwt

Here dw= — (i7?) (¢*/4a-+b%/2a), v=nv/l, v is the veloc-
ity of an atom, and the Schrédinger equation is to be
integrated from »¢=0 to vi=m.

The factor 3= is introduced to keep the area under
the curves in Fig. 1 the same. Intuitively we would
then expect to get about the same transition probabil-
ity. In fact, if A=8w=0 (on resonance, no shift) the
Schrédinger equation with the Hamiltonian (4) can be
solved exactly, giving a transition probability at vt=m:

P =sin?(wc/v) =sin2(cl/v),

which is the same as (2) under the same conditions
(¢g=c¢, t=1/v). Hence, at the peak of the resonance
the Hamiltonians (1) and (4) both give the same
transition probability and the same optimum excita-
tion condition 2¢l/a=1.200r.*

Except for the special case just mentioned, the
Schrédinger equation with the Hamiltonian (4) can-
not be solved analytically. It is of a type periodic in
time for which an elegant formalism has been devel-
oped.® However, this formalism does not lead to any
shortcuts or useful approximations in the present case.
The only approximation of any value is the adiabatic
approximation. At high powers (¢£>37), Eq. (2) shows
that P(f) oscillates several times while the atom tra-
verses the radiation field region. If this oscillation is
rapid compared to the rate of change of the sinwt
modulating ¢ (¢>v), then (2) should give an approxi-
mate solution at each instantaneous value of sinvi:

(v ‘;Z (cj)sin%t e /° o« )
0

with ¢2(¢) = (#2/4) & sin?i+ (A—dw sin?)2. At best (5)
is valid only in the wings of the line A>>v. At vi=m,
(5) says the wings of the line have no shift and no
amplitude. This suggests that the line shape resulting
from (4) is narrower and less shifted than that given

by (2).

P(t)~s

3. THE NUMERICAL METHOD

To obtain more definitive results the Schrédinger
equation with the Hamiltonian (4) was integrated nu-
merically with the aid of a digital computer. The fourth-
order Runge-Kutta method was used. A trial run using
the Hamiltonian (1) and then comparing the results of

8 J. H. Shirley, Phys. Rev. 138, B979 (1965).
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—] Fic. 2. Line shape for
X=5, S=3. The locus of
the midpoint between the
two sides is also shown.

the numerical integration with the analytic solution (2)
indicated that the accumulated error in the normaliza-
tion of the wave function gave a crude but useful bound
on the error in the transition probability. Accordingly,
the number of steps used in the numerical integration
was automatically controlled to maintain the normali-
zation within 0.005 of 1.

For a quantitative comparison with experiment, it
is necessary to average the transition probability P
over the distribution of velocities in the atomic beam.
In Ramsey’s work* this average is expressible in terms
of the function

1(X) = [ exp(—3?) cos(X/5)dy
0

[e.g. Eq. (3)]. Since we have only numerical values
instead of the cosine function for the integrand, we
must do the integral numerically. The method was
first checked by computing 7 (X) numerically and com-
paring the results with Ramsey’s table. To avoid the
rapid oscillations near y=0, the variable of integration
was changed to Z=y1:

I(X) =/ Z5 exp(—Z72%) cosXZdZ.
0

This integral was evaluated by Simpson’s rule. The
step size must be reduced as X is increased to maintain
accuracy. The experience gained with this integral was
utilized in the final program which computed the veloc-
ity averaged transition probability according to the
formula

(P)=2 fo :z—s exp(—Z2) P(XZ, YZ, SZ)dZ. (6)

Here

X =2cl/7e, Y=2Al/ra, and S=éwl/ra (7)

are dimensionless measures of the microwave field am-
plitude, deviation from resonance, and expected fre-
quency shift, respectively, and Z=ea/v. The arguments
of P are the parameters required for the integration of
the Schrodinger equation in dimensionless form. The
2 in front is for normalization. The lower limit of 0.3
was used instead of zero since the weighting function is
negligible for smaller values of Z. The upper limit
corresponds to excluding from the velocity distribution
all atoms whose velocities are less than 3. The geome-
try of the spectrometer used in the experiments was
such that these slower atoms actually do not contribute
to the observed signal.’

To obtain one value of (P) for given parameters
X, V, S, it is necessary to integrate the Schriédinger
equation numerically for each point needed to evaluate
(6) by Simpson’s rule. The number of steps required
for either integration is modest at X =1, but increases
rapidly to 50 or 100 for X =10, the actual number used
being determined by the computer. For a check on the
error accumulated in such lengthy calculations, they
were carried out using the time-independent Hamilto-
nian (1) and comparing the results with (3). Out of
about 40 points compared, the largest discrepancy was
29, with most values agreeing to less than 1%.: ¥'%. 3

To study the linewidth, the shift .S was set equal to
zero. Then (P) was calculated for three values of ¥
in the vicinity of ¥ = («xX/2)Y2. Parabolic interpola-
tion was used to find Yy, the value of ¥ such that

When S50, the line shapes are somewhat asymmet-
ric (see Fig. 2). The frequency shift found depends
upon the height at which the line is split. Note that
the wings of the line appear to approach no shift, in

9 R. J. Harrach (private communication).
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agreement with the adiabatic approximation. For a
consistent procedure analogous to the experimental
method, the line center was defined as the midpoint
of the line at 709, of its maximum height. Using the
linewidths previously determined, the computer se-
lected ¥ values which gave values of (P) approxi-
mately 60 and 809, of the height on each side. Linear
interpolation then provided the ¥V values at 709, of
peak height, which were averaged to yield the line
center V..

4. RESULTS

The half-widths ¥y, found by the computer by using
the method described are given in Table I and com-
pared with the empirical formula. The X values were
chosen to correspond to the experimental data.! For
large X the half-width becomes Vi,=1.07(xX/2)12,
Using @=2.7X10* cm/sec and /=16 cm, the full width
becomes w=(a/l) V12=2.5(P;/ Pp)"*kHz, where P;is a
measure of the microwave power input to the spectrom-

Fi1c. 4. Theoretical power
dependence of S and Y.
for experimental conditions.
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eter and P, is the corresponding value at optimum
power: P,/ Py=(X/1.2)% The experimental result! was
w=2.2(P;/ P,)*kHz.

For a given X and S, let the ¥ value at the line
center defined in the preceding section be represented
by Y.=F(X)S. Adiabatically the line center occurs
at Y'=25 sin®?. Hence F(X) represents some result-
ant average of 2 sin®¢. We might guess that F(X) =1,
but any value of F between 0 and 2 would be possible.
Conceivably F could depend on S as well as X, but
limited data indicate that it does not, at least for shifts
small compared to the linewidth. The function F(X)
as revealed by the numerical calculations is shown in
Fig. 3. The value 1.5 near optimum power may arise
because most of the transition takes place while the
sine function is large. The small values of F for large
X imply that the shifts are much smaller than antici-
pated, in agreement with the experiments.

Experimentally, the shifts were determined for vari-
ous values of the input power keeping other variables
fixed. Recalling the definition of .S [see Eq. (7)] and
of 6w [see Eq. (4)], we find that .S should be increased
as X? or linearly with the input power. The matrix ele-
ments in (1) were evaluated for a C field of 15 mG
(a=0.44X10? sec™!). With 5=0 and « and [ as given
previously we arrived at S=0.0186X2. With this
value for S, V. was computed at X values correspond-
ing to the experimental data. The results are found in
Table II along with the theoretical [i.e., (a/20)¥V,]
and experimental shifts in hertz. The former are un-
certain by 15 to 30 Hz and the latter by about 50 Hz.
Clearly the order of magnitude of the shifts is in
agreement.

The computed frequency shifts ¥, are plotted as a
function of excitation power in Fig. 4. The straight line
disappearing out of the top of the graph is S, the
expected shift if F(X)=1. Harrach fitted a straight
line to the corresponding experimental data, since the
scatter was too great to show such features as the dip
in Fig. 4. The frequency corresponding to no shift was
determined experimentally by extrapolating to zero
power. A straight line fitted to the right-hand portion

TasrLE I. Empirical linewidth (37X)2, computed linewidth
Y1, and their ratio as a function of excitation power P; or di-
mensionless amplitude X.

P;/ Py X 3rX)2 Yy,  Ratio
1 1.20 1.37 1.43 1.04

5 2.68 2.05 2.1 1.03
20 5.36 2.90 3.10 1.07
80 10.72 4.10 4.38 1.07
160 15.18 4.89 5.23 1.07
250 18.96 5.46 5.84 1.07
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TasLe II. Dimensionless frequency shift S expected for rec-
tangular envelope, dimensionless shift ¥, computed for sinusoidal
envelope, computed shift in hertz, and experimental shift in
hertz as a function of excitation power P; or dimensionless ampli-
tude X.

Shifts in hertz

P;/ Py X S Y, Theor. Expt.

3 2.08 0.08 0.097 80 0

10 3.79 0.27 0.055 45 35
20 5.36 0.53 0.159 135 -5
30 6.57 0.80 0.193 165 5
50 8.48 1.34 0.206 175 135
80 10.73 2.14 0.276 235 175
100 12.00 2.68 0.304 255 245
150 14.70 4.02 0.371 315 370

of Fig. 4 will not extrapolate to zero shift; hence, the
experimental shifts in Table II should probably be in-
creased. The only significant number that can be ex-
tracted from Harrach’s data is the slope of his fitted
line at high powers. At the three higher C field values
for which Harrach plotted his data these slopes are
consistent with a slope obtained from the right-hand
side of Fig. 4. For the three lower C field values the
experimental slopes are higher, probably because of the
presence of overlap shifts.

5. SUMMARY

A theoretical analysis of the transition probability
in the atomic-beam spectrometer used by Harrach
indicates that the linewidth increases as the fourth
root of the microwave excitation power and that natu-
ral frequency shifts are reduced by an order of magni-
tude at input powers of the order of 100 times optimum.
These results adequately explain the experimental ob-
servations made by Harrach. Further confirmation of
the theory could be achieved by observing the dip in
frequency shift at about 8 times optimum power, al-
though better experimental reproducibility would be
required. It is probable that the natural shifts sought
in the experiment were observed in their reduced form,
but the scatter in the data and the presence of overlap
shifts make this conclusion subject to question. The
experiment should be redone using a rectangular micro-
wave field amplitude, which can be achieved, for exam-
ple, by sending the beam longitudinally down the center
of a rectangular cavity operated in the TMs;, mode.
The natural shift should then be large enough to domi-
nate all other frequency shifts and permit a quantita-
tive test of its form as given in Eq. (2).
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